A METHOD OF TABULATING THE NUMBER-THEORETIC FUNCTION $g(k)$

RENATE SCHEIDLER AND HUGH C. WILLIAMS

Abstract

Let $g(k)$ be the least integer $>k+1$ such that all prime factors of $\binom{g(k)}{k}$ are greater than k. The function $g(k)$ appears to show quite irregular behavior and is hard to compute. This paper describes a method of computing $g(k)$, using sieving techniques, and provides a table of values of $g(k)$ for $k \leq 140$.

1. Introduction

In a symposium on computers in number theory held in 1969, Erdős [3] presented a paper consisting of problems he felt might be approachable by computational techniques. One of these was to determine an estimate for $g(k)$, where $g(k)$ is the least integer ($>k+1$) such that all the prime factors of $\binom{g(k)}{k}$ must exceed k. In a subsequent paper, Ecklund, Erdős, and Selfridge [2] provided a table of values of $g(k)$. This table is complete for $k \leq 40$; also, three more entries are present for $k=42,46$, and 52 . These are all the values of $g(k) \leq 2500000$ when $k \leq 100$.

Very little seems to be known about the behavior of $g(k)$. It appears to increase rather rapidly with increasing k, and it is difficult to compute. Thus, it was thought that a larger table of $g(k)$ might prove to be useful. The purpose of this paper is to discuss a method of computing $g(k)$ by using sieving techniques, and to provide a complete table of values of $g(k)$ for all $k \leq 140$.

We begin with a brief discussion of the generalized sieving problem. In general, a sieving problem P defines h linear congruences

$$
x \equiv r_{i_{1}}, r_{i_{2}}, \ldots, r_{i_{n_{i}}}\left(\bmod m_{i}\right) \quad\left(i=1,2, \ldots, h ; 1 \leq n_{i}<m_{i}\right),
$$

where the moduli $m_{1}, m_{2}, \ldots, m_{h}$ are positive integers. It may be assumed that the m_{i} are relatively prime in pairs, and that each set of admissible residues $R_{i}=\left\{r_{i_{1}}, r_{i_{2}}, \ldots, r_{n_{n_{1}}}\right\}$ contains distinct, nonnegative integers less than m_{i}. The solution set $S(P)$ for P is defined to be all integers x that lie within an interval or range specified by P, say $A \leq x \leq b$, such that

$$
\begin{equation*}
x\left(\bmod m_{i}\right) \in R_{i} \quad(i=1,2, \ldots, h) \tag{1.1}
\end{equation*}
$$

and satisfy any additional restrictions placed on x by P.

It is possible to construct very fast special purpose machines for finding solutions to sieve problems. Recently, Stephens and Williams [5] have described such a device, called OASiS. OASiS will search for values of x satisfying a sieving problem at the rate of 215000000 trials per second. It should be pointed out that OASiS is just the most recent in a long series of such machines. For a history of the developments, we refer the reader to [5]. When sieving mechanisms are in use, it is customary to call the sets of admissible residues R_{i} rings modulo m_{i} and the process of determining values which should be in the R_{i} sets loading the rings. The execution of any sieve problem is made up of two phases: (1) loading the rings, (2) searching for the solution. The process of searching for a solution is performed by first producing values in the range satisfying (1.1) and then determining whether these values satisfy any additional restrictions. This latter operation is called filtering.

In the next sections we will show how the problem of determining $g(k)$ can be converted to a sieve problem.

2. The algorithm

We need to determine the minimal number $n>k+1$ such that no prime $p \leq k$ is a divisor of $\binom{n}{k}$. In order to determine whether or not $\binom{n}{k}$ is divisible by a prime p, we first make use of a result which is essentially due to Kummer (see [1, p. 220]).

Theorem 1. Let $n=\sum_{i=0}^{t} b_{i} p^{i}$ and $k=\sum_{i=0}^{t} a_{i} p^{i}$ be the base-p representations of n and k, respectively, where p is a prime. Then $p \nmid\binom{n}{k}$ if and only if $b_{i} \geq a_{i}$ $(i=0,1, \ldots, t)$.
Proof. Let $\varepsilon_{-1}=0$, and for $i=0,1, \ldots, t$ put

$$
\varepsilon_{i}=\left\{\begin{array}{ll}
1 & \text { if } b_{i}<a_{i}+\varepsilon_{i-1} \\
0 & \text { if } b_{i} \geq a_{i}+\varepsilon_{i-1}
\end{array}, \quad c_{l}=p \varepsilon_{i}+b_{i-1}-a_{i-1}-\varepsilon_{i-1}\right.
$$

Then the ε_{i} are the "carry-overs" when performing the subtraction of k from n in base p, and we have

$$
n-k=\sum_{i=0}^{t} c_{i} p^{i}-p^{t+1} \varepsilon_{t}
$$

and $0 \leq c_{i}<p$. Since $n-k>0$, we must have $\varepsilon_{t}=0$, and we have found that the base- p representation of $n-k$ is given by

$$
n-k=\sum_{i=0}^{t} c_{i} p^{i} .
$$

We can now use the well-known theorem of Legendre on the highest power of p which divides the factorial of an integer to find that

$$
p^{\alpha} \|\binom{ n}{k}
$$

where $\alpha=\sum_{i=0}^{t} \varepsilon_{i}$. It follows that $p \nmid\binom{n}{k}$ if and only if $\varepsilon_{0}=\varepsilon_{1}=\cdots=\varepsilon_{t}=0$, and this occurs if and only if $a_{i} \leq b_{i} \quad(i=0,1, \ldots, t)$.

In order to make use of this past result, we need to be able to compute the coefficients of k in base p. If $k=\sum_{i=0}^{m} a_{i} p^{i}$, where m is such that $p^{m} \leq k<p^{m+1}$, i.e., $m=\left\lfloor\log _{p} k\right\rfloor=\lfloor\log k / \log p\rfloor \geq 1$, then the coefficients a_{i} ($i=0,1, \ldots, m$) can be easily computed by putting

$$
\begin{align*}
& a_{0} \equiv k(\bmod p) \quad\left(0 \leq a_{0}<p\right), \quad s_{0}=k, \\
& a_{i+1} \equiv s_{i+1}(\bmod p) \quad\left(0 \leq a_{i+1}<p\right), \quad s_{i+1}=\frac{s_{i}-a_{i}}{p} . \tag{2.1}
\end{align*}
$$

Since we would like to convert our condition $p \nmid\binom{n}{k}$ into a sieving problem, we must determine the possible residues of n modulo p^{m}. Define the sets C_{i} ($i=0,1, \ldots, m$) by

$$
C_{i}=\left\{a_{i}, a_{i}+1, a_{i}+2, \ldots, p-1\right\} .
$$

If $n=\sum_{i=0}^{t} b_{i} p^{i}$, then $t \geq m$, and by Theorem $1, p \nmid\binom{n}{k}$ if and only if $b_{i} \in C_{i}$ for all $i=0,1, \ldots, m$. For two arbitrary sets S, T of integers and a rational number l, let

$$
\begin{gathered}
S+T=\{s+t \mid s \in S, t \in T\}, \quad l S=\{l s \mid s \in S\} \\
S+l=S+\{l\}, \quad \frac{S}{l}=\frac{1}{l} S
\end{gathered}
$$

We now define sets

$$
B_{0}=C_{0}, \quad B_{i}=B_{i-1}+p^{i} C_{i} \quad(i=1,2, \ldots, m) .
$$

It follows that $B_{i}=\sum_{j=0}^{i} p^{j} C_{j}$.
Lemma 1. Let $n^{\prime} \equiv n\left(\bmod p^{m}\right)$ and $0 \leq n^{\prime}<p^{m}$. Then $n^{\prime} \in B_{m-1}$ if and only if $b_{i} \in C_{i} \quad(i=0,1, \ldots, m-1)$.
Proof. It is easy to see that if $b_{i} \in C_{i}(i=0,1, \ldots, m-1)$, then $n^{\prime}=$ $\sum_{i=0}^{m-1} b_{i} p^{i} \in B_{m-1}$. The rest of the lemma follows from the fact that $p^{i} C_{i} \cap$ $p^{j} C_{j}=\varnothing$ for $i \neq j$.

From Theorem 1 and Lemma 1 it follows that $p \nmid\binom{n}{k}$ if and only if $n^{\prime} \in$ B_{m-1} and $b_{m} \in C_{m}$. If we write $n=n^{\prime}+p^{m} y$, then $y=\sum_{i=0}^{t-m} b_{m+i} p^{i}$; hence, $y \equiv b_{m}(\bmod p)$. Since $n / p^{m} \leq y<n / p^{m}+1$, we have $b_{m} \equiv\left\lfloor n / p^{m}\right\rfloor(\bmod p)$. If we let $B_{m-1}=\left\{r_{1}, r_{2}, \ldots, r_{q}\right\}$, we obtain the following result.

Theorem 2. We have $p \nmid\binom{n}{k}$ if and only if $n \equiv r_{1}, r_{2}, \ldots, r_{q}\left(\bmod p^{m}\right)$ and $\left\lfloor n / p^{m}\right\rfloor(\bmod p) \geq a_{m}$.

This gives rise to the following sieving algorithm for determining $g(k)$.
(a) Load the rings. For each prime $p \leq k$:
(1) Compute $m=\lfloor\log k / \log p\rfloor$ and determine $a_{0}, a_{1}, \ldots, a_{m}$ as in (2.1).
(2) Find $B_{m-1}=\left\{r_{1}, r_{2}, \ldots, r_{q}\right\}$.
(3) Load the values of $r_{1}, r_{2}, \ldots, r_{q}$ into the ring of modulus p^{m}.
(b) Search for $g(k)$.
(1) Start searching for solutions at $2 k+1$. (In [2] it is shown that $g(k) \geq 2 k+1$ for $k>4$.)
(2) Once a certain range has been sieved, test each solution candidate s by the following routine: for each $p \leq k$ determine that $\left\lfloor s / p^{m}\right\rfloor(\bmod p) \geq a_{m}$.
(3) The least value of s which passes this test is the value of $g(k)$.

The implementation of this algorithm produced immense sieving times for values of $g(k)$ for even modest values of k. Fortunately, it is possible to speed up the computation by a factor of approximately k in the case when $k+1$ is a composite integer. To describe this faster algorithm, assume that $k+1$ is composite, and write $k+1=q p^{\alpha}(\alpha \geq 1)$, where p is a prime and $p \nmid q$.
Lemma 2. If $k+1$ is composite, then $k+1 \mid g(k)+1$.
Proof. If $k+1$ is composite, we have $p<k$ and

$$
\begin{aligned}
k & =q p^{\alpha}-1=(q-1) p^{\alpha}+p^{\alpha}-1 \\
& =(q-1) p^{\alpha}+(p-1)\left(p^{\alpha-1}+p^{\alpha-2}+\cdots+p+1\right)
\end{aligned}
$$

hence, $a_{0}=a_{1}=\cdots=a_{\alpha-1}=p-1$ and $C_{0}=C_{1}=\cdots=C_{\alpha-1}=\{p-1\}$. From this it is easy to show that

$$
B_{i}=\left\{p^{i+1}-1\right\} \quad(0 \leq i \leq \alpha-1) .
$$

From our earlier results it is easy to deduce that $p \nmid\binom{n}{k}$ only if $n\left(\bmod p^{\alpha}\right) \in$ $B_{\alpha-1}$; that is, if $p \nmid\binom{n}{k}$ then $n \equiv-1\left(\bmod p^{\alpha}\right)$. Since this must be true for all prime divisors of $k+1$, we see that when $k+1$ is composite we must have $k+1 \mid g(k)+1$.

Thus, in this case, $h(k)=(g(k)+1) /(k+1)$ is an integer, and in fact, $N=(n+1) /(k+1)$ must be an integer for all possible values n for $g(k)$. Hence, we can increase the speed of sieving by a factor of $k+1$ by sieving for $h(k)$ instead of $g(k)$. We now explain how this can be done. We first require

Theorem 3. Let n be a possible value for $g(k)$, where $k+1$ is composite, and let $N=(n+1) /(k+1)$. Let $p \leq k$ be a prime.
(a) If $p \nmid k+1$, then $N\left(\bmod p^{m}\right) \in Q_{m}\left(B_{m-1}+1\right)$, where

$$
\begin{equation*}
Q_{m}(k+1) \equiv 1 \quad\left(\bmod p^{m}\right) \tag{2.2}
\end{equation*}
$$

(b) If $p^{\alpha} \| k+1$, then we have two cases:
if $\alpha=m+1$, then $n \equiv-1\left(\bmod p^{m}\right)$;
if $\alpha \leq m$, then $N\left(\bmod p^{m}\right) \in Q_{m}\left(B_{m-1}+1\right) / p^{\alpha}$, where

$$
\begin{equation*}
Q_{m} \frac{k+1}{p^{\alpha}} \equiv 1 \quad\left(\bmod p^{m}\right) \tag{2.3}
\end{equation*}
$$

Proof. By Lemma 1, we have $n+1\left(\bmod p^{m}\right) \in B_{m-1}+1$.
(a) Let $p \nmid k+1$ and let Q_{m} be as in (2.2). Then $n\left(\bmod p^{m}\right) \in B_{m-1}$ if and only if $N\left(\bmod p^{m}\right) \in Q_{m}\left(B_{m-1}+1\right)$.
(b) Let $p^{\alpha} \| k+1$. Since $k+1 \leq p^{m+1}$, we must have $\alpha \leq m+1$. If $\alpha=m+1$, then $B_{m-1}=\left\{p^{m}-1\right\}$, and hence $n \equiv-1\left(\bmod p^{m}\right)$. Now suppose $\alpha \leq m$, and let Q_{m} be as in (2.3). Then

$$
N \equiv \frac{n+1}{p^{\alpha}} Q_{m} \quad\left(\bmod p^{m}\right) .
$$

Now if $r \in B_{m-1}$, then $r\left(\bmod p^{\alpha}\right) \in B_{\alpha-1}$; thus, $r \equiv-1\left(\bmod p^{\alpha}\right)$, so all the elements of $B_{m-1}+1$ are divisible by p^{α}. Hence,

$$
N\left(\bmod p^{m}\right) \in Q_{m} \frac{B_{m-1}+1}{p^{\alpha}} .
$$

In the particular case $k+1=p^{m+1}$, the congruence $n \equiv-1\left(\bmod p^{m}\right)$ is always satisfied, and we do not need to include the modulus p^{m} in the sieving process. So in the case of $k+1$ being composite, we can modify our earlier algorithm by changing step (3) of part (a) to:
(3) If $p \nmid k+1$, compute Q_{m} of (2.2) and load the residues $Q_{m}\left(r_{1}+1\right)$, $Q_{m}\left(r_{2}+1\right), \ldots, Q_{m}\left(r_{q}+1\right)\left(\bmod p^{m}\right)$ into the ring of modulus p^{m}.
If $p^{\alpha} \| k+1$ and $\alpha \leq m$, compute Q_{m} of (2.3) and load the residues $Q_{m}\left(r_{1}+1\right) / p^{\alpha}, Q_{m}\left(r_{2}+1\right) / p^{\alpha}, \ldots, Q_{m}\left(r_{q}+1\right) / p^{\alpha}\left(\bmod p^{m}\right)$ into the ring of modulus p^{m}.
If $k+1=p^{m+1}$, then do not sieve on p^{m}.
Part (b) of the algorithm is changed as follows. Since $(g(k)+1) /(k+1) \geq$ $(2 k+2) /(k+1)=2$, we start the search at 2 . Once a certain range has been sieved, test each solution candidate s by putting $S=(k+1) s-1$ and determining for each $p \leq k$ that $\left\lfloor S / p^{m}\right\rfloor(\bmod p) \geq a_{m}$. The least value of S for which this holds is $g(k)$.

3. The table

In Table 1 we give all the values for $g(k)$ for $k \leq 140$. To get some idea of how long this took to do, we point out that OASiS required 2 hours 48 minutes to compute $g(111)$; it required about 11 days 11 hours to compute the largest value found, $g(139)$; and it took 5 days 1 hour to compute $g(112)$. For these last two values, the sieving times slightly exceeded the expected computation times of approximately 10 days and 4 days 21 hours, respectively (based on a rate of 215000000 trials per second). The reason for this is that OASiS verified the contents of its rings every hour, and each such checkpoint required around 9 minutes for $g(139)$ and 2 minutes for $g(112)$. The checkpoints for $g(139)$ took significantly more time than those for $g(112)$, since $k=139$ required more congruences, so there were more rings to verify. We note here that in the cases of $k=111$ and $k=139$, sieving for $h(k)$ did in fact achieve a speedup of roughly $k+1$ relative to the expected time of sieving for $g(k)$.

In [4], Erdős pointed out that the values of $g(k)$ appear to grow much faster than the lower bound k^{1+c} given in [2], where c is a positive constant. Our computations seem to confirm this.

Table 1

k	$g(k)$	k	$g(k)$	k	$g(k)$
2	6	49	38074099	96	5589371247
3	7	50	4302206	97	104141995747
4	7	51	13927679	98	10628330723
5	23	52	366847	99	5675499
6	62	53	79221239	100	3935600486
7	143	54	7638454	101	2128236159983
8	44	55	53583095	102	175209712494
9	159	56	17868986	103	5092910127863
10	46	57	34296443	104	6003175578749
11	47	58	4703099	105	4753399456493
12	174	59	108178559	106	488898352367
13	2239	60	93851196	107	6260627365739
14	239	61	2237874623	108	9746385386989
15	719	62	254322494	109	73245091349869
16	241	63	157776319	110	94794806842238
17	5849	64	266194499	111	222261611307119
18	2098	65	174133871	112	90200708362489
19	2099	66	25013442	113	517968108138869
20	43196	67	673750867	114	517968108138869
21	14871	68	643364693	115	12714356616655615
22	19574	69	237484869	116	4112143718554871
23	35423	70	549177974	117	10584753118053749
24	193049	71	3184709471	118	3781786358757119
25	2105	72	4179979724	119	598228285941119
26	36287	73	15780276223	120	260509131365372
27	1119	74	19942847999	121	404087677322873
28	284	75	48899668971	122	115598852533247
29	240479	76	16360062718	123	71406652074623
30	58782	77	2198202863	124	28204866143999
31	341087	78	950337359	125	3988617067133
32	371942	79	29154401359	126	5614007242751
33	6459	80	43228410965	127	60503616486143
34	69614	81	6599930719	128	14320632355808
35	37619	82	1101163607	129	38423911578259
36	152188	83	797012560343	130	7984603413422
37	152189	84	95695473244	131	3249072073157063
38	487343	85	449488751711	132	96965971239157
39	767919	86	328151678711	133	1558724612351669
40	85741	87	39419852119	134	621248003653094
41	3017321	88	94923115999	135	3157756005623
42	96622	89	3524996442239	136	4138898693368
43	24041599	90	2487760912090	137	951598054985213
44	45043199	91	739416801247	138	745504491090939
45	9484095	92	2380889434844	139	25972027636644319
46	692222	93	577593151999	140	9089854222866845
47	232906799	94	107706126974		
48	45375224	95	71573860223		

Acknowledgments

The authors wish to thank Carole Lacampagne and John Selfridge for bringing this problem to their attention and suggesting the use of sieving techniques for the computation of $g(k)$.

Bibliography

1. L. E. Dickson, History of the theory of numbers, vol. 1, Chelsea, New York, 1966.
2. E. F. Ecklund, Jr., P. Erdős, and J. L. Selfridge, A new function associated with the prime factors of $\binom{n}{k}$, Math. Comp. 28 (1974), pp. 647-649.
3. P. Erdős, Some problems in number theory, Computers in Number Theory (A. O. L. Atkin and B. J. Birch, eds.), Academic Press, London, 1971, pp. 405-414.
4. __, Uses of and limitations of computers in number theory, Computers in Mathematics (D. V. Chudnovsky and R. D. Jenks, eds.), Marcel Dekker, New York, 1990, pp. 241-260.
5. A. J. Stephens and H. C. Williams, An open architecture number sieve, London Math. Soc. Lecture Note Ser., vol. 154, Cambridge Univ. Press, 1990, pp. 38-75.

Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, CANADA

E-mail address, R. Scheidler: scheidl@silver.umanitoba.ca
E-mail address, H. C. Williams: hugh_williams@csmail.cs.umanitoba.ca

